Foundation Models for Robot Task Planning

Weiheng Wang, Sheng Liu, Jiekun Chen Supervisor: Timo Birr

Motivation

Complex and Ambiguous of Nature Language

 Low level semantic details can't be fully represented by language only e.g. Object positions, Spatial relationships, Visual context

World is multimodal

Our Contribution

• Improve the performance of AutoGPT+P^[1] with Vision-Language-Model

• Parallel Research with Image2PDDL^[2](preprinted on Jan 2025)

Scene

Online Image From Robot

What we want to do

SCENE-DESCRIPTION

OBJECTS

apple:0 #red

apple:1 #red

apple:2 #green

apple:3 #green

apple:4 #green

coffee_cup:0 #blue

bowl:0 #woven

table:0 #grey

human:0 #human

END-OBJECTS

RELATIONS

on apple:0 table:0

on apple:1 table:0

on apple:2 table:0

on apple:3 table:0

on apple:4 table:0

on coffee cup:0 table:0

on bowl:0 table:0

at human:0 table:0

at robot:0 table:0

END-RELATIONS

LOCATIONS

table0 table:0 apple:0 apple:1 apple:2 apple:3 apple:4 coffee cup:0 bowl:0

END-LOCATIONS

LOCATIONS

table0 table:0 apple:0 apple:1 apple:2 apple:3

apple:4 coffee cup:0 bowl:0

END-LOCATIONS


```
(define (problem test)
                                               (:init
                                                  (on apple1 table0)
(:domain robotic_planning)
                                                  (on apple3 table0)
                                                  (on apple4 table0)
(:objects
                                                  (at human0 table0)
                                                  (on apple2 table0)
  apple3 - apple; green
  robot0 - robot_profile ;
                                                  (on coffee_cup0 table0)
   coffee cup0 - coffee cup; blue
                                                  (on apple0 table0)
   apple2 - apple; green
                                                  (on bowl0 table0)
                                                  (at robot0 table0)
  apple0 - apple; red
  table0 - table; grey
                                                  (= total-cost 0)
   bowl0 - bowl; woven
                                                  (= (cost robot0) 1)
                                                  (= (cost human0) 100)
   human0 - human; human
  apple1 - apple; red
  apple4 - apple; green
                                               (:metric minimize (total-cost))
```


Conclusion

→ Integrated Multimodal Approach

→ Comprehensive Scene Understanding

Future Work

- → Enhanced Multimodal Perception
- → Real-Time and Dynamic Planning
- → Interactive Feedback Loop
- → Expansion to Complex Tasks and Domains
- → Relative Position for Objects

References

[1] Birr, T., Pohl, C., Younes, A., & Asfour, T. (2024). Autogpt+ p: Affordance-based task planning with large language models. *arXiv preprint arXiv:2402.10778*.

[2] Dang, X., Kudláčková, L., & Edelkamp, S. (2025). Planning with Vision-Language Models and a Use Case in Robot-Assisted Teaching. *arXiv* preprint arXiv:2501.17665.

