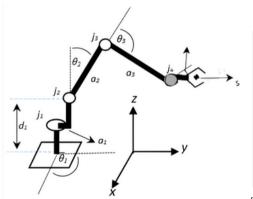
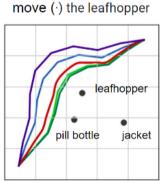


Alignment of Modalities in Foundation Models

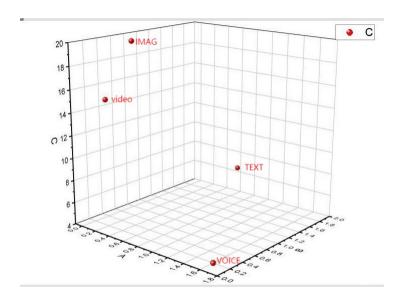
Weiheng Wang, Timo Birr and Tamim Asfour Seminar Humanoid Robots WS 2024/2025

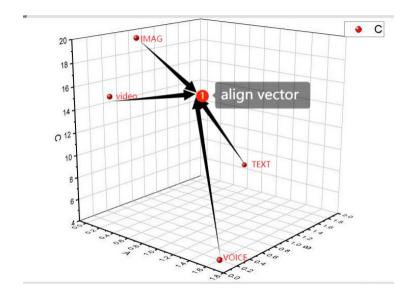
Why Multi-modal





Alignment of Modalities in Foundation Models

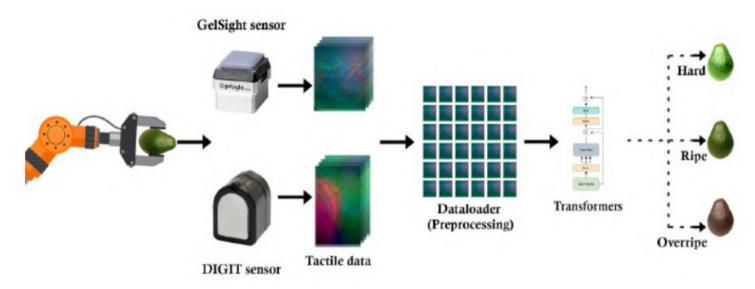

Legend: Original Trajectory a lot further away from a bit further away from a bit closer to a lot closer to


Reshaping Robot Trajectories Using Natural Language Commands: A Study of Multi-Modal Data Alignment Using Transformers

Why Alignment of multi-modalities

Alignment of Modalities in Foundation Models

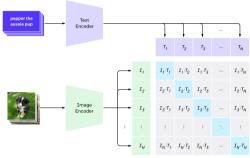
The foundation structure of MM-LLMs



Encoder-Decoder Structure makes the alignment easier and promising[1]

The common sense reasoning ability of LLM

HapticFormers: Utilizing Transformers for Avocado Maturity Grading through Vision-based Tactile Assessment


Using common sense to decide if the avocado is mature^[2]

Three different ways for alignment

A dog catching a frisbee.

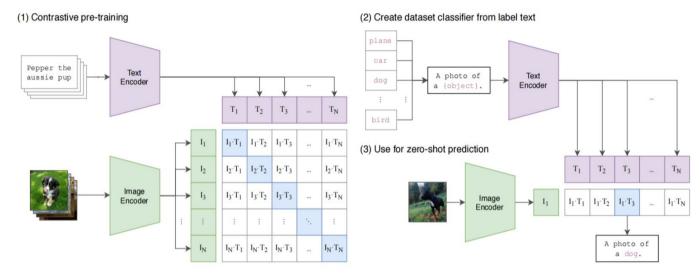
Decoder Laver 1 Encoder Laver K Masked Self Attention Encoder Laver 1 Cross Attention Feed Forward Pretrained LM Weights Self Attention Encoder-decoder Attention Feed Forward Decoder Laver K A cop on brown horse on sidewalk next to truck.

Learning Transferable Visual Models From Natural Language Supervision

MAPL : Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-Shot Prompting

- Contrastive learning
 - CLIP[3]
 - CLOOB^[4]
 - ALIGN^[5]
 - DeCLIP^[6]

- PrefixLM
 - MAPL^[7]
 - Flamingo^[8]
 - ClipCap^[9]

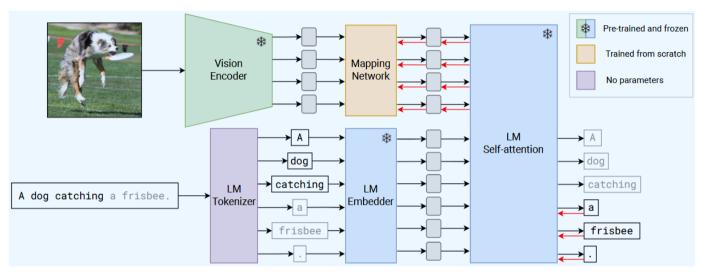

VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

- Cross attention
 - VisualGPT^[10]
 - Flamingo^[8]
 - VC-GPT^[11]

Classification based on structure of alignment--Contrastive **learning**

Learning Transferable Visual Models From Natural Language Supervision

CLIP^[3]


CLOOB^[4]

- ALIGN^[5]
- DeCLIP^[6]
- Disadvantages: Training a new model from scratch with great amount of data

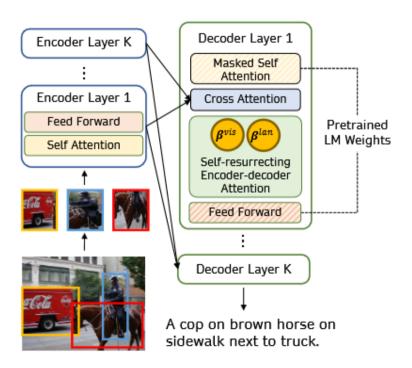
Classification based on structure of alignment--PrefixLM

MAPL: Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-Shot Prompting

■ MAPL^[7]

ClipCap^[9]

Alignment of Modalities in Foundation Models


Advantage: Leveraging existed LLM

■ Flamingo^[8]

Advatange: Adaptance for different modalities

Classification based on structure of alignment—Cross Attention

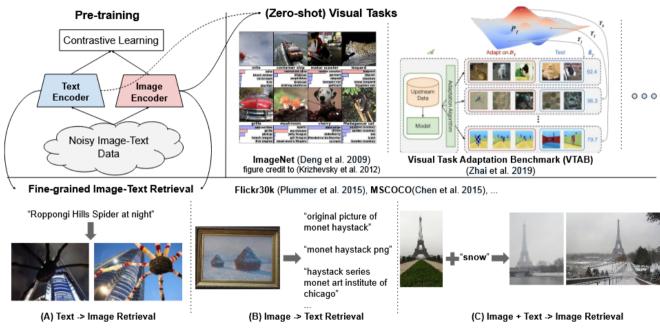
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

Alignment of Modalities in Foundation Models

- VisualGPT^[10]
- Flamingo^[8]
- VC-GPT^[11]

Balance the mixture of text generation capacity and visual information efficiently

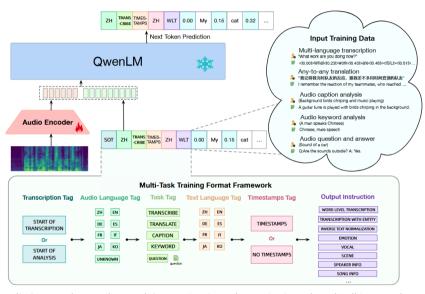
Classification based on Modality



- Non-robotic modalities
 - Image: CLIP^[3], Flamingo^[8], InternVL^[12], PaLM-E^[13]
 - Audio: AudioGPT^[14]. Owen-Audio^[15]
 - Any modalites: AnyGPT^[16]
- Robot specific modalities (pose, joint angle, trajectory, states)
 - Point cloud: PointLLM^[17]. 3D-LLM^[18]
 - Tactile: T3^[19]
 - Image&Text&States: PaLM-E^[13]
 - Trajectory:NL-trajectory-reshaper^[20]
 - End Effector Pose: OpenVLA^[21] (MM-decoder)

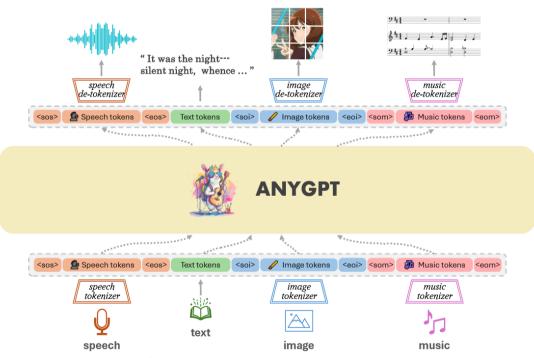
Classification based on Modality--Image

Learning Transferable Visual Models From Natural Language Supervision


CLIP, Flamingo, InternVL^[12], PaLM-E^[13]

CLIP: using Constrastive Learning

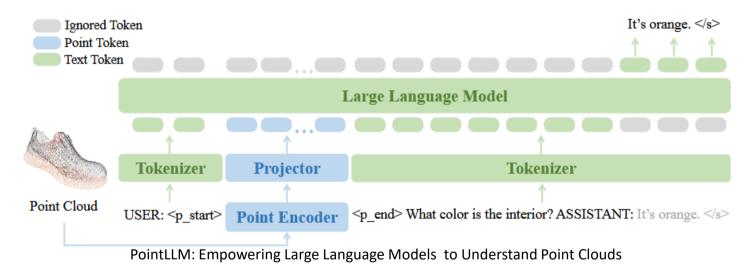
AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head


AudioGPT^[14], Qwen-Audio^[15]

PrefixLM Structure

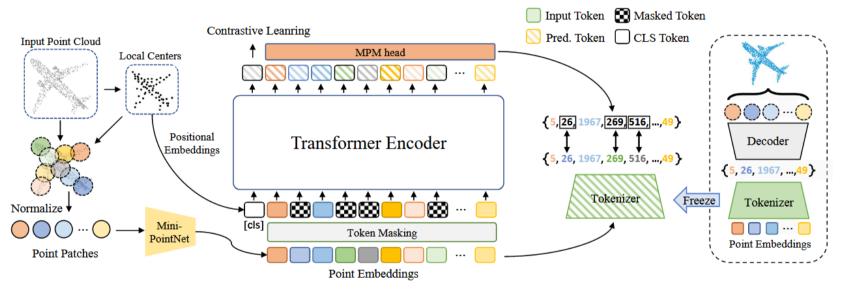
Classification based on Modality--Intergrated Modality

PrefixLM Structure


AnyGPT^[16]

AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling

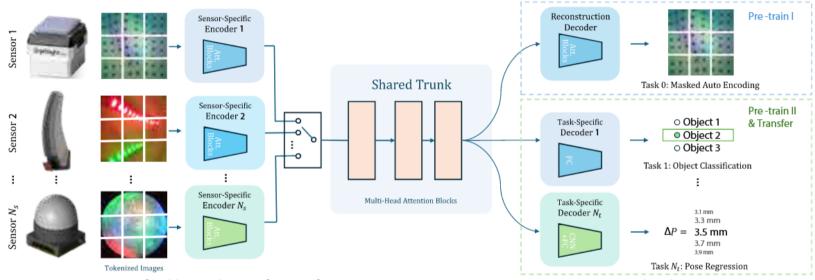
Classification based on Modality--Point cloud



PointLLM^[17], 3D-LLM^[18]

PrefixLM Structure For 3D object captioning

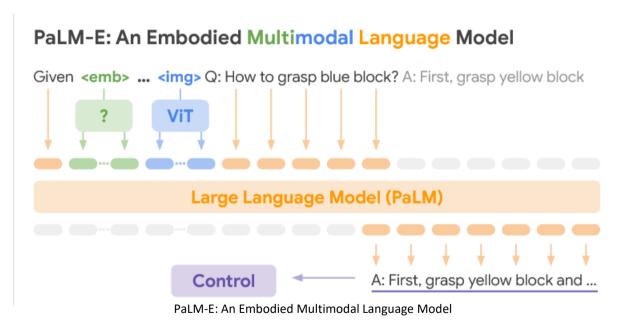
Classification based on Modality--Point cloud


Point-BERT: Pre-training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT^[22]

Classification based on Modality--Tactile

Transferable Tactile Transformers for Representation Learning Across Diverse Sensors and Tasks


 $T3^{[19]}$

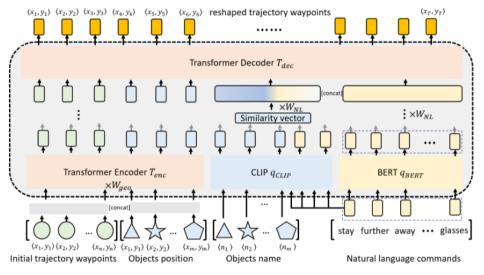
Encoder-Decoder without LLM

Classification based on Modality--Image&Text&States

PaLM-E

PrefixI M Structure

Classification based on Modality--Image&Text&States


PaLM-E

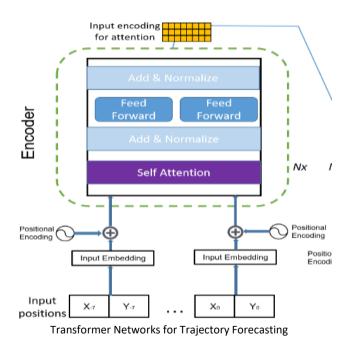
PrefixLM Structure

Shows Robustness against disturbance

Classification based on Modality--Trajectory

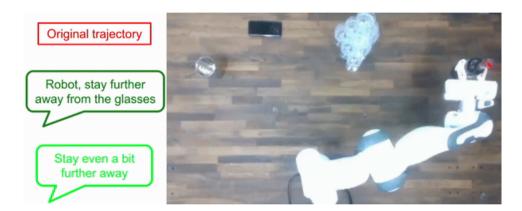
Reshaping Robot Trajectories Using Natural Language Commands: A Study of Multi-Modal Data **Alignment Using Transformers**

NL-trajectory-reshaper^[20]


PrefixI M Structure

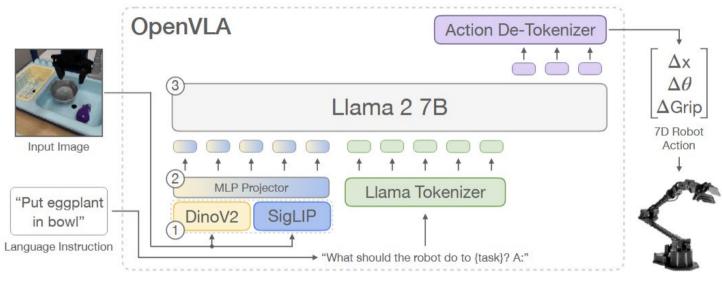
Institute for Anthropomatics and Robotics (IAR

Classification based on Modality--Trajectory


Trajectory Encoder^[23]

Introducing the Positional Encoding to add the time stamp for trajectory sequence

Classification based on Modality--Trajectory

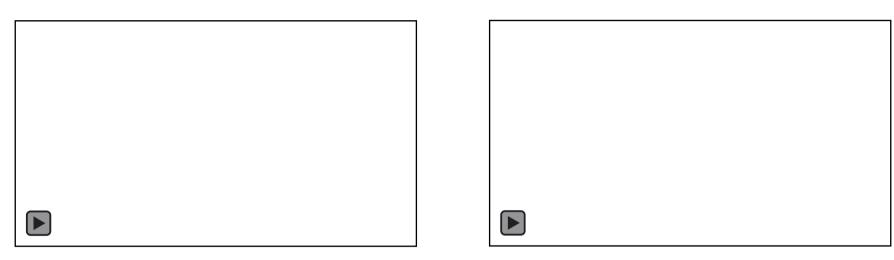

Function: Using natural language to reshape the trajectory, from collision

Reshaping Robot Trajectories Using Natural Language Commands: A Study of Multi-Modal Data **Alignment Using Transformers**

NL-trajectory-reshaper^[19]

Classification based on Modality—End Effector Pose

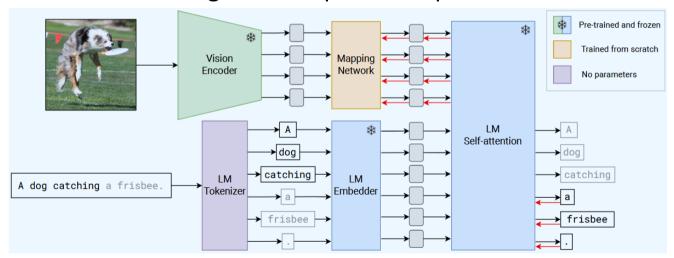
OpenVLA: An Open-Source Vision-Language-Action Model


OpenVLA^[21]

PrefixLM Structure

Classification based on Modality—End Effector Pose

OpenVLA: An Open-Source Vision-Language-Action Model


It shows the ability for end-to-end Action generate

Conclusion

- PrefixLM seems like the most promising method for robotic multimodal learning, leveraging the pre-trained LLM.
- More modalities can be aligned to improve the performance of robots.

MAPL: Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-Shot Prompting

References

- [1] Ye, Hanrong, et al. "X-VILA: Cross-Modality Alignment for Large Language Model." arXiv preprint arXiv:2405.19335 (2024).
- [2] I. Fahmy, T. Hassan, I. Hussain, N. Werghi and L. Seneviratne, "HapticFormers: Utilizing Transformers for Avocado Maturity Grading through Vision-based Tactile Assessment," 2024 IEEE Haptics Symposium (HAPTICS), Long Beach, CA, USA, 2024, pp. 347-352, doi: 10.1109/HAPTICS59260.2024.10520836.
- [3]A. Radford et al., "Learning Transferable Visual Models From Natural Language Supervision" Feb. 26, 2021, arXiv: arXiv:2103.00020. doi: 10.48550/arXiv.2103.00020.
- [4] A. Fürst et al., "CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP," Nov. 07, 2022, arXiv: arXiv:2110.11316. doi: 10.48550/arXiv.2110.11316.
- [5]C. Jia et al., "Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision," Jun. 11, 2021, arXiv: arXiv:2102.05918. doi: 10.48550/arXiv.2102.05918.
- [6] Li Y, Liang F, Zhao L, et al. Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm[J]. arXiv preprint arXiv:2110.05208, 2021.
- [7] O. Mañas, P. Rodriguez, S. Ahmadi, A. Nematzadeh, Y. Goyal, and A. Agrawal, "MAPL: Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-Shot Prompting," Mar. 15, 2023, arXiv: arXiv:2210.07179. doi: 10.48550/arXiv.2210.07179.
- [8] J.-B. Alayrac et al., "Flamingo: a Visual Language Model for Few-Shot Learning," Nov. 15, 2022, arXiv: arXiv:2204.14198. doi: 10.48550/arXiv.2204.14198.
- [9] Mokady, Ron, Amir Hertz, and Amit H. Bermano. "Clipcap: Clip prefix for image captioning." arXiv preprint arXiv:2111.09734 (2021).

Alignment of Modalities in Foundation Models

References

- [10] Chen, Jun, et al. "Visualgpt: Data-efficient adaptation of pretrained language models for image captioning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
- [11] Luo, Ziyang, et al. "A frustratingly simple approach for end-to-end image captioning." arXiv preprint arXiv:2201.12723 (2022).
- [12] Z. Chen et al., "InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks," Jan. 15, 2024, arXiv: arXiv:2312.14238. doi: 10.48550/arXiv.2312.14238.
- [13] D. Driess et al., "PaLM-E: An Embodied Multimodal Language Model," Mar. 06, 2023, arXiv: arXiv:2303.03378. doi: 10.48550/arXiv.2303.03378.
- [14] R. Huang et al., "AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head," Apr. 25, 2023, arXiv: arXiv:2304.12995. doi: 10.48550/arXiv.2304.12995. arXiv:2308.16911. doi: 10.48550/arXiv.2308.16911.
- [15] Y. Chu et al., "Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models," Dec. 21, 2023, arXiv: arXiv:2311.07919. doi: 10.48550/arXiv.2311.07919.
- [16] J. Zhan et al., "AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling," Mar. 07, 2024, arXiv: arXiv:2402.12226. doi: 10.48550/arXiv.2402.12226.
- [17] R. Xu, X. Wang, T. Wang, Y. Chen, J. Pang, and D. Lin, "PointLLM: Empowering Large Language Models to Understand Point Clouds," Sep. 06, 2024, arXiv:

Alignment of Modalities in Foundation Models

References

[18] Hong, Yining, et al. "3d-llm: Injecting the 3d world into large language models." Advances in Neural Information Processing Systems 36 (2023): 20482-20494.

[19] J. Zhao, Y. Ma, L. Wang, and E. H. Adelson, "Transferable Tactile Transformers for Representation Learning Across Diverse Sensors and Tasks," Oct. 06, 2024, arXiv: arXiv:2406.13640. doi: 10.48550/arXiv.2406.13640.A. [20] Bucker, L. Figueredo, S. Haddadin, A. Kapoor, S. Ma, and R. Bonatti, "Reshaping Robot Trajectories Using Natural Language Commands: A Study of Multi-Modal Data Alignment Using Transformers," Mar. 25, 2022, arXiv: arXiv:2203.13411. doi: 10.48550/arXiv.2203.13411.

[21] M. J. Kim et al., "OpenVLA: An Open-Source Vision-Language-Action Model," Sep. 05, 2024, arXiv: arXiv:2406.09246. doi: 10.48550/arXiv.2406.09246.

[22] Yu X, Tang L, Rao Y, et al. Point-bert: Pre-training 3d point cloud transformers with masked point modeling[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 19313-19322.

[23] Giuliari F, Hasan I, Cristani M, et al. Transformer networks for trajectory forecasting[C]//2020 25th international conference on pattern recognition (ICPR). IEEE, 2021: 10335-10342.

